Containerization & Virtualization

Toward Faster, Easier, and Automated SDLC

Ahmed Hassanin

Lead Software Engineer

♥ Gabrianoo in Ahmed Hassanien ■ Garage Education

eng.ahmedgaber@gmail.com

March 30, 2020

- 1. Introduction
- 2. Virtualization
- 3. Containerization
- 4. Summary and Popular Questions
- 5. References

Introduction

• Early on, organizations ran applications on physical servers.

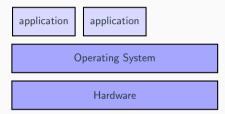
- Early on, organizations ran applications on physical servers.
- Install or use an existing operating system.

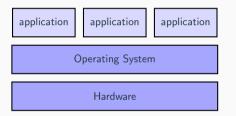
- Early on, organizations ran applications on physical servers.
- Install or use an existing operating system.
- Install the tools needed by your software.

- Early on, organizations ran applications on physical servers.
- Install or use an existing operating system.
- Install the tools needed by your software.
- Install dependencies of your software.

- Early on, organizations ran applications on physical servers.
- Install or use an existing operating system.
- Install the tools needed by your software.
- Install dependencies of your software.
- Run your software.

Hardware


Operating System


Hardware

application

Operating System

Hardware

• Isolation issue, no way to define resource boundaries for applications in a physical server, and this caused resource allocation issues.

- Isolation issue, no way to define resource boundaries for applications in a physical server, and this caused resource allocation issues.
- Scaling issues as resources were underutilized.

- Isolation issue, no way to define resource boundaries for applications in a physical server, and this caused resource allocation issues.
- Scaling issues as resources were underutilized.
- It was expensive for organizations to maintain many physical servers.

Virtualization

• Virtualizing hardware produces virtual machines (VMs).

- Virtualizing hardware produces virtual machines (VMs).
- Virtualization allows you to run multiple VMs on a single physical server. Each VM includes a full copy of an operating system, the application, necessary binaries, and libraries taking up tens of GBs.

- Virtualizing hardware produces virtual machines (VMs).
- Virtualization allows you to run multiple VMs on a single physical server. Each VM includes a full copy of an operating system, the application, necessary binaries, and libraries - taking up tens of GBs.
- Virtualization allows more effortless adding and updating of applications that solve the scalability issue.

- Virtualizing hardware produces virtual machines (VMs).
- Virtualization allows you to run multiple VMs on a single physical server. Each VM includes a full copy of an operating system, the application, necessary binaries, and libraries - taking up tens of GBs.
- Virtualization allows more effortless adding and updating of applications that solve the scalability issue.
- Virtualization allows better utilization of resources.

- Virtualizing hardware produces virtual machines (VMs).
- Virtualization allows you to run multiple VMs on a single physical server. Each VM includes a full copy of an operating system, the application, necessary binaries, and libraries - taking up tens of GBs.
- Virtualization allows more effortless adding and updating of applications that solve the scalability issue.
- Virtualization allows better utilization of resources.
- Virtualization isolates applications between VMs.

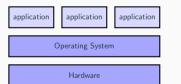
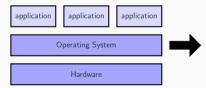
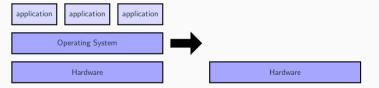
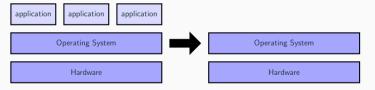
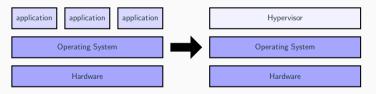
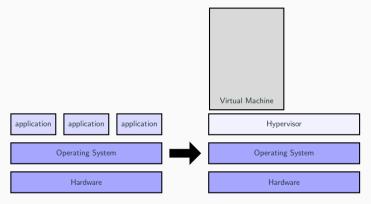
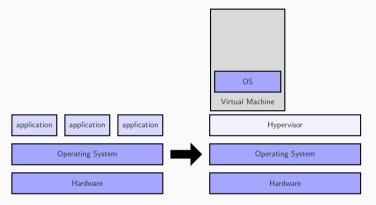
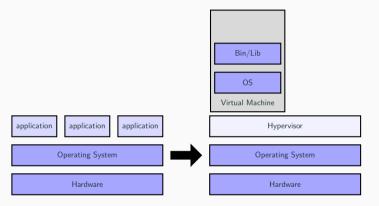
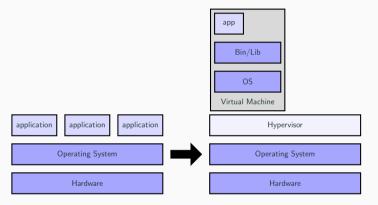


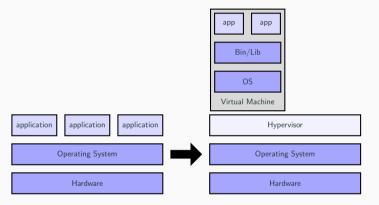
Figure 2: Virtualization Deployment

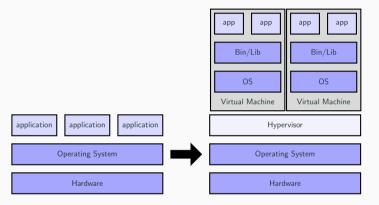







Figure 2: Virtualization Deployment









• How is virtualization possible?

- How is virtualization possible?
 - A hypervisor is computer software, firmware or hardware that creates and runs virtual machines.

- How is virtualization possible?
 - A hypervisor is computer software, firmware or hardware that creates and runs virtual machines.
 - The hypervisor allows multiple VMs to run on a single machine.

- How is virtualization possible?
 - A hypervisor is computer software, firmware or hardware that creates and runs virtual machines.
 - The hypervisor allows multiple VMs to run on a single machine.
- The hypervisor has 2 types:

Type-1, native, or bare-metal hypervisors.

Type-1, native, or bare-metal hypervisors.

Examples

• Type-1: VMware ESX and Citrix Xen servers.

Type-1, native, or bare-metal hypervisors.

Examples

• Type-1: VMware ESX and Citrix Xen servers.

Hardware

Type-1, native, or bare-metal hypervisors.

Examples

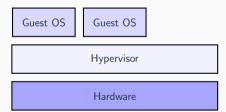
• Type-1: VMware ESX and Citrix Xen servers.

Hypervisor

Hardware

Type-1, native, or bare-metal hypervisors.

Examples


• Type-1: VMware ESX and Citrix Xen servers.

Guest OS	
	Hypervisor
	Llaudouaua

Type-1, native, or bare-metal hypervisors.

Examples


• Type-1: VMware ESX and Citrix Xen servers.

Type-1, native, or bare-metal hypervisors.

Examples

• Type-1: VMware ESX and Citrix Xen servers.

Type-2, or hosted hypervisors.

Type-2, or hosted hypervisors.

Examples

• Type-2: VMware player and VirtualBox.

Type-2, or hosted hypervisors.

Examples

• Type-2: VMware player and VirtualBox.

Hardware

Type-2, or hosted hypervisors.

Examples

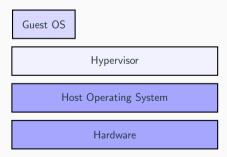
• Type-2: VMware player and VirtualBox.

Host Operating System

Hardware

Type-2, or hosted hypervisors.

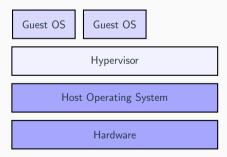
Examples


• Type-2: VMware player and VirtualBox.

Hypervisor
Host Operating System
Hardware

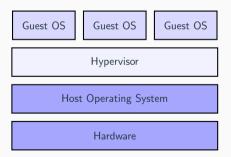
Type-2, or hosted hypervisors.

Examples


• Type-2: VMware player and VirtualBox.

Type-2, or hosted hypervisors.

Examples

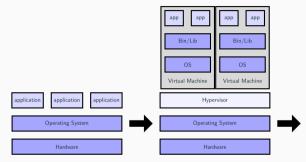

• Type-2: VMware player and VirtualBox.

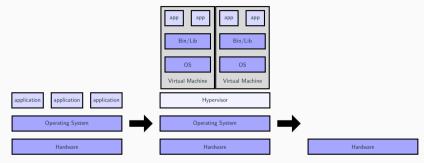
Type-2, or hosted hypervisors.

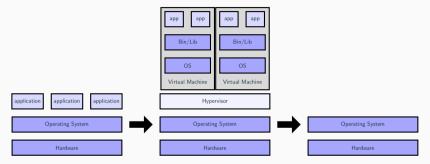
Examples

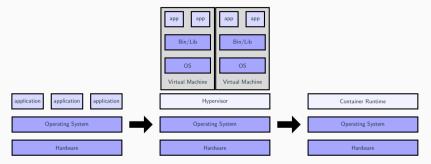
• Type-2: VMware player and VirtualBox.

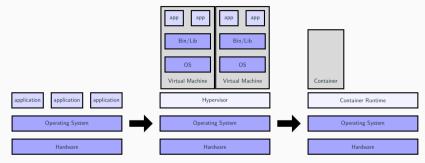
Containerization

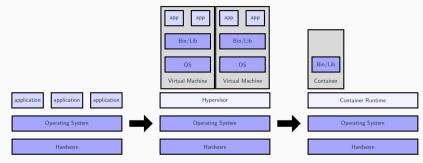

• The process of virtualizing the operating system produces containers.

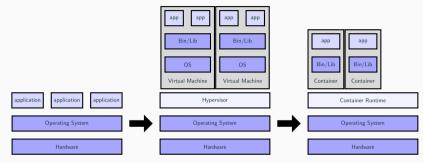

- The process of virtualizing the operating system produces containers.
- Container is a virtual operating system.

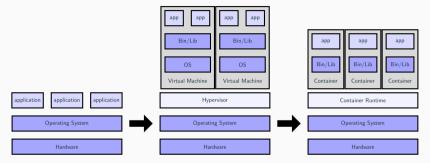

- The process of virtualizing the operating system produces containers.
- Container is a virtual operating system.
- A container is an abstraction at the OS layer that packages code and dependencies together as a standardized unit of software.


- The process of virtualizing the operating system produces containers.
- Container is a virtual operating system.
- A container is an abstraction at the OS layer that packages code and dependencies together as a standardized unit of software.
- Containers take up less space than VMs, boots quickly, and in isolation.


- The process of virtualizing the operating system produces containers.
- Container is a virtual operating system.
- A container is an abstraction at the OS layer that packages code and dependencies together as a standardized unit of software.
- Containers take up less space than VMs, boots quickly, and in isolation.
- Containerization eliminates infrastructure wasted resources and utilizes them.







• How is containerization possible?

- How is containerization possible?
 - OS-level virtualization refers to an operating system paradigm in which the operating system allows the existence of multiple isolated user-space instances (containers).

- How is containerization possible?
 - OS-level virtualization refers to an operating system paradigm in which the operating system allows the existence of multiple isolated user-space instances (containers).
 - OS-level virtualization solutions are the container engines.

- How is containerization possible?
 - OS-level virtualization refers to an operating system paradigm in which the operating system allows the existence of multiple isolated user-space instances (containers).
 - OS-level virtualization solutions are the container engines.
 - A container engine is a managed environment for deploying containerized applications.

- How is containerization possible?
 - OS-level virtualization refers to an operating system paradigm in which the operating system allows the existence of multiple isolated user-space instances (containers).
 - OS-level virtualization solutions are the container engines.
 - A container engine is a managed environment for deploying containerized applications.
- User-space instances have different names

- How is containerization possible?
 - OS-level virtualization refers to an operating system paradigm in which the operating system allows the existence of multiple isolated user-space instances (containers).
 - OS-level virtualization solutions are the container engines.
 - A container engine is a managed environment for deploying containerized applications.
- User-space instances have different names
 - Containers in **Docker** and Linux containers **LXC**.

- How is containerization possible?
 - OS-level virtualization refers to an operating system paradigm in which the operating system allows the existence of multiple isolated user-space instances (containers).
 - OS-level virtualization solutions are the container engines.
 - A container engine is a managed environment for deploying containerized applications.
- User-space instances have different names
 - Containers in **Docker** and Linux containers **LXC**.
 - VPS in **OpenVZ**

- How is containerization possible?
 - OS-level virtualization refers to an operating system paradigm in which the operating system allows the existence of multiple isolated user-space instances (containers).
 - OS-level virtualization solutions are the container engines.
 - A container engine is a managed environment for deploying containerized applications.
- User-space instances have different names
 - Containers in **Docker** and Linux containers **LXC**.
 - VPS in **OpenVZ**
 - Virtual Kernel DragonFly BSD

Summary and Popular Questions

• The word virtualization applies to hardware and operating system.

- The word virtualization applies to hardware and operating system.
- Hardware virtualization produces virtual machines.

- The word virtualization applies to hardware and operating system.
- Hardware virtualization produces virtual machines.
- Operating system virtualization produces containers.

• Containerization gives us better resource isolation with predictable application performance.

- Containerization gives us better resource isolation with predictable application performance.
- Containerization gives us better resource utilization with high efficiency and density.

- Containerization gives us better resource isolation with predictable application performance.
- Containerization gives us better resource utilization with high efficiency and density.
- They are loosely coupled, distributed, elastic, liberated micro-services.

- Containerization gives us better resource isolation with predictable application performance.
- Containerization gives us better resource utilization with high efficiency and density.
- They are loosely coupled, distributed, elastic, liberated micro-services.
- Environmental consistency across development, testing, and production "It worked on my machine."

- Containerization gives us better resource isolation with predictable application performance.
- Containerization gives us better resource utilization with high efficiency and density.
- They are loosely coupled, distributed, elastic, liberated micro-services.
- Environmental consistency across development, testing, and production "It worked on my machine."
- Agile application creation and deployment.

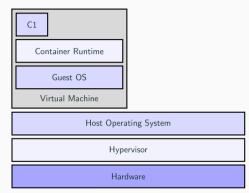
• A hybrid container architecture is an architecture combining virtualization on both hardware and OS levels.

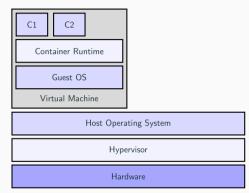
- A hybrid container architecture is an architecture combining virtualization on both hardware and OS levels.
- Example: The container engine and associated containers execute on top of a virtual machine.

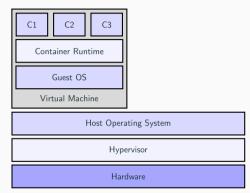
- A hybrid container architecture is an architecture combining virtualization on both hardware and OS levels.
- Example: The container engine and associated containers execute on top of a virtual machine.
- Use of a hybrid container architecture is also known as hybrid containerization.

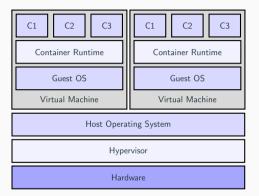
Hardware

Hypervisor


Hardware


Host Operating System		
Hypervisor		
Hardware		


Virtual Machine		
Host Operating System		
Hypervisor		
Hardware		


Guest OS Virtual Machine		
Host Operating System		
Hypervisor		
Hardware		

Container Runtime		
Guest OS		
Virtual Machine		
Host Operating System		
Hypervisor		
Hardware		

• You can have native windows containers but not Linux native containers yet.

- You can have native windows containers but not Linux native containers yet.
- Microsoft's native hypervisor solution is Hyper-V.

- You can have native windows containers but not Linux native containers yet.
- Microsoft's native hypervisor solution is Hyper-V.
- Using Hyper-V Microsoft supports running VMs natively on Windows, for example, Ubuntu on Windows (WSL).

- You can have native windows containers but not Linux native containers yet.
- Microsoft's native hypervisor solution is Hyper-V.
- Using Hyper-V Microsoft supports running VMs natively on Windows, for example, Ubuntu on Windows (WSL).
- Microsoft is working on the OS-level virtualization solution to run Linux native containers.

References

- Virtualization via containers
- OS-level virtualization
- Hyper-V
- What is a container?
- What is Kubernetes?
- Prep Windows for containers