
(Big) Data Engineering In Depth
From Beginner to Professional

Moustafa Alaa
Senior Data Engineer at Onfido, London, UK

The Definitive Guide to Big Data Engineering Tasks



Previous video recap!



Chapter: Introduction To Distributed
Systems



Section: Course Intro



Chapter Objectives
▶ Capturing the state of the art in building high performance

distributed computing using Hadoop, Spark, and Kafka.

▶ Providing the relevant theoretical and practical background and
its best practices.

▶ Demonastrating the main concepts and components for
distributed systems.

▶ Advancing the understanding of building scalable software
systems for large scale data processing and its best practices.



Chapter Objectives
▶ Capturing the state of the art in building high performance

distributed computing using Hadoop, Spark, and Kafka.

▶ Providing the relevant theoretical and practical background and
its best practices.

▶ Demonastrating the main concepts and components for
distributed systems.

▶ Advancing the understanding of building scalable software
systems for large scale data processing and its best practices.



Chapter Objectives
▶ Capturing the state of the art in building high performance

distributed computing using Hadoop, Spark, and Kafka.

▶ Providing the relevant theoretical and practical background and
its best practices.

▶ Demonastrating the main concepts and components for
distributed systems.

▶ Advancing the understanding of building scalable software
systems for large scale data processing and its best practices.



Chapter Objectives
▶ Capturing the state of the art in building high performance

distributed computing using Hadoop, Spark, and Kafka.

▶ Providing the relevant theoretical and practical background and
its best practices.

▶ Demonastrating the main concepts and components for
distributed systems.

▶ Advancing the understanding of building scalable software
systems for large scale data processing and its best practices.



Target Audience
▶ Software Engineers and Application Developers.

▶ Data Analysts and DWH/Data Engineers.

▶ Researchers.



Target Audience
▶ Software Engineers and Application Developers.

▶ Data Analysts and DWH/Data Engineers.

▶ Researchers.



Target Audience
▶ Software Engineers and Application Developers.

▶ Data Analysts and DWH/Data Engineers.

▶ Researchers.



Section: Design Simple Distributed
System (Case Study Example 1)



Case Study Example 1
▶ Assume we have a file contains 1TB of text lines, and we need

to convert the text to be the upper case, for example (The ->
THE).

▶ We need to design the program without using any ready
distributed system framework.

▶ You can use any number (n) of machines. Assume n specs are
8 GB of memory, hard desk 128 GB, and 2 cores of CPU.



Case Study Example 1
▶ Assume we have a file contains 1TB of text lines, and we need

to convert the text to be the upper case, for example (The ->
THE).

▶ We need to design the program without using any ready
distributed system framework.

▶ You can use any number (n) of machines. Assume n specs are
8 GB of memory, hard desk 128 GB, and 2 cores of CPU.



Case Study Example 1
▶ Assume we have a file contains 1TB of text lines, and we need

to convert the text to be the upper case, for example (The ->
THE).

▶ We need to design the program without using any ready
distributed system framework.

▶ You can use any number (n) of machines. Assume n specs are
8 GB of memory, hard desk 128 GB, and 2 cores of CPU.



Case Study Example 1

Input

Hello world

PC

HELLO WORLD

Output
Figure: Simple design for small file(s) processing



Case Study Example 1

Parallel Distributed Processing

Memory Memory

Processor Processor Processor Processor

Processor

Processor

Memory

Memory

Figure: Parallel processing vs Distributed processing



Case Study Example 1

Input

Hello world

Node 1

HELLO WORLD

Output

File Split

Split-1

Split-2

Figure: Adding File Split function to split big files into equal chunks



Case Study Example 1

Input

Hello

Node 1

HELLO

Output

File Split

Split-1

Split-2

Node 2

Sx % n

Mgmt Box

Figure: Adding another node to distribute the processing across
serveral nodes (n).



Case Study Example 1

Input

Hello

Node 1

HELLO

Output

File Split

Split-1

Split-2

Node 2

???

Mgmt BoxFile System Box Processing Box



Management box
▶ How do we distribute the data across the nodes?

▶ How do we know the number of active nodes (or the status of
the nodes)?

▶ How do we know if some tasks are stucking?

▶ How do we track the tasks passed to the nodes?

▶ What will happen if this box is down? How can we avoid this?

▶ How do we track the available resources (containers) in our
cluster?



Management box
▶ How do we distribute the data across the nodes?

▶ How do we know the number of active nodes (or the status of
the nodes)?

▶ How do we know if some tasks are stucking?

▶ How do we track the tasks passed to the nodes?

▶ What will happen if this box is down? How can we avoid this?

▶ How do we track the available resources (containers) in our
cluster?



Management box
▶ How do we distribute the data across the nodes?

▶ How do we know the number of active nodes (or the status of
the nodes)?

▶ How do we know if some tasks are stucking?

▶ How do we track the tasks passed to the nodes?

▶ What will happen if this box is down? How can we avoid this?

▶ How do we track the available resources (containers) in our
cluster?



Management box
▶ How do we distribute the data across the nodes?

▶ How do we know the number of active nodes (or the status of
the nodes)?

▶ How do we know if some tasks are stucking?

▶ How do we track the tasks passed to the nodes?

▶ What will happen if this box is down? How can we avoid this?

▶ How do we track the available resources (containers) in our
cluster?



Management box
▶ How do we distribute the data across the nodes?

▶ How do we know the number of active nodes (or the status of
the nodes)?

▶ How do we know if some tasks are stucking?

▶ How do we track the tasks passed to the nodes?

▶ What will happen if this box is down? How can we avoid this?

▶ How do we track the available resources (containers) in our
cluster?



Management box
▶ How do we distribute the data across the nodes?

▶ How do we know the number of active nodes (or the status of
the nodes)?

▶ How do we know if some tasks are stucking?

▶ How do we track the tasks passed to the nodes?

▶ What will happen if this box is down? How can we avoid this?

▶ How do we track the available resources (containers) in our
cluster?



File System
▶ How can we store a massive amount of data in distributed

systems?

▶ How can we design a file system which supports highly
fault-tolerant?

▶ Do we require special hardware to design a distributed storage
system?

▶ How can we design storage systems to support distributed
processing?



File System
▶ How can we store a massive amount of data in distributed

systems?

▶ How can we design a file system which supports highly
fault-tolerant?

▶ Do we require special hardware to design a distributed storage
system?

▶ How can we design storage systems to support distributed
processing?



File System
▶ How can we store a massive amount of data in distributed

systems?

▶ How can we design a file system which supports highly
fault-tolerant?

▶ Do we require special hardware to design a distributed storage
system?

▶ How can we design storage systems to support distributed
processing?



File System
▶ How can we store a massive amount of data in distributed

systems?

▶ How can we design a file system which supports highly
fault-tolerant?

▶ Do we require special hardware to design a distributed storage
system?

▶ How can we design storage systems to support distributed
processing?



Data nodes
▶ How datanodes continuously communicate with the

management node?

▶ How datanodes receive the tasks instructed by the
management node?

▶ Can datanodes store data besides their roles for processing?



Data nodes
▶ How datanodes continuously communicate with the

management node?

▶ How datanodes receive the tasks instructed by the
management node?

▶ Can datanodes store data besides their roles for processing?



Data nodes
▶ How datanodes continuously communicate with the

management node?

▶ How datanodes receive the tasks instructed by the
management node?

▶ Can datanodes store data besides their roles for processing?



Section: Design Simple Distributed
System (Case Study Example 2)



Previous video recap!



Case Study Example 1

Input

Hello

Node 1

HELLO

Output

File Split

Split-1

Split-2

Node 2

Sx % n

Mgmt Box

Figure: Convert text to upper text, for example, The -> THE



Case Study Example 1

Input

Hello

Node 1

HELLO

Output

File Split

Split-1

Split-2

Node 2

???

Mgmt BoxFile System Box Processing Box



Case Study Example 2
▶ Assume we have a file contains 1TB of text lines, and we need

to calculate the word count across the document, for example,
The cat came back the very next day -> (the, 2), (cat,1),
(came,1), (back, 1), (very, 1), (next, 1), (day, 1).

▶ One of the distributed architecture solutions for this problem is
to use map-reduce.



Case Study Example 2
▶ Assume we have a file contains 1TB of text lines, and we need

to calculate the word count across the document, for example,
The cat came back the very next day -> (the, 2), (cat,1),
(came,1), (back, 1), (very, 1), (next, 1), (day, 1).

▶ One of the distributed architecture solutions for this problem is
to use map-reduce.



The basic idea of MapReduce
▶ Assume we need to launch a high-throughput bulk-production

sandwich shop.

▶ This sandwich has a lot of raw ingredients, and our target is to
produce the sandwich as quickly as possible.

▶ To make the production very quickly we need to distribute the
tasks between the workers.

1This example taken from
https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


The basic idea of MapReduce
▶ Assume we need to launch a high-throughput bulk-production

sandwich shop.

▶ This sandwich has a lot of raw ingredients, and our target is to
produce the sandwich as quickly as possible.

▶ To make the production very quickly we need to distribute the
tasks between the workers.

1This example taken from
https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


The basic idea of MapReduce
▶ Assume we need to launch a high-throughput bulk-production

sandwich shop.

▶ This sandwich has a lot of raw ingredients, and our target is to
produce the sandwich as quickly as possible.

▶ To make the production very quickly we need to distribute the
tasks between the workers.

1This example taken from
https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


The basic idea of MapReduce
We break this into three stages

▶ Map.

▶ Shuffle/Group (Mapper Intermediates).

▶ Reduce

1This example taken from
https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


The basic idea of MapReduce
We break this into three stages

▶ Map.

▶ Shuffle/Group (Mapper Intermediates).

▶ Reduce

1This example taken from
https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


The basic idea of MapReduce
We break this into three stages

▶ Map.

▶ Shuffle/Group (Mapper Intermediates).

▶ Reduce

1This example taken from
https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


Map
We distribute our raw ingredients amongst the workers.

1This example taken from https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


Shuffle/Group
We will organise and group the processed ingredients
into piles, so that making a sandwich becomes easy.

1This example taken from https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


Reduce
we’ll combine the ingredients into a sandwich

1This example taken from https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


Case Study Example 2

(The,{1,1})
(next,1)
(very,1)

(back,1)
(cat,1)
(came,1)
(day,1)The cat came back

split-1

The very next day

split-2

S % n

split-1

split-2

map

map

Node 1
Node 2

(The,1)
(cat,1)
(came,1)
(back,1)

(The,1)
(very,1)
(next,1)
(day,1)

input

input

output

output

Shuffle
& Soft

(back,1)
(cat,1)
(came,1)
(day,1)

(The,{1,1})
(next,1)
(very,1)

count

count

(back,1)
(cat,1)
(came,1)
(day,1)

(The,2)
(next,1)
(very,1)

fn

fn

Node 2
Node 1

output

outputfn

fninput

input

Reduce sideMap side



Thank you for watching!



See you in the next video ©


	Introduction To Distributed Systems
	Course Intro
	Design Simple Distributed System (Case Study Example 1)
	Design Simple Distributed System (Case Study Example 2)


