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Chapter Objectives
• Query data lakes/HDFS using Hive.

• Introduction to Hive

• Comparing Hive to Traditional databases.

• Hive Components and Architecture.

• Relational Data Analysis with Hive.

• Hive Data Management.

• Hive Optimization.

• Hive Demo.
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Section: Query data lakes/HDFS using Hive
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Query data lakes/HDFS using Hive
• Data lakes and HDFS store vast amounts of petabyte-scale data.

• Data analysts require efficient ways to query this data without delving into
intricate Map-Reduce programming.

• SQL is a commonly used language for data manipulation, embraced by data
analysts, developers, and business users worldwide.

• Hive, one of the early tools in this field, simplifies data analysis on big data by
offering SQL-like querying capabilities for data lakes and HDFS.

• There are other tools like Trino/Presto, Snowflake, and Databricks that can be
faster for data lake queries, which we will discuss later.
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Section: Introduction to hive

Data Engineering In Depth | Moustafa Mahmoud
Page 6/107



Introduction to hive
• Apache Hive is a powerful data warehousing and SQL-like query language tool
within the Hadoop ecosystem.

• It was developed by Facebook and later contributed to the Apache Software
Foundation, making it an open-source project.

• Apache Hive had its initial release on October 1, 2010.
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Introduction to hive
• Hive provides a user-friendly interface to work with and analyze large datasets
stored in Hadoop Distributed File System (HDFS) or other compatible storage
systems.

• With its SQL-like language called HiveQL, users can write queries to extract,
transform, and analyze data, making it accessible to a wide range of data
professionals

• Apache Hive bridges the gap between the world of big data and traditional
relational databases, making it a valuable tool for data engineers, analysts, and
data scientists.
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Hive Query Example

1 SELECT *
2 FROM Customers
3 WHERE Country = ’USA’;

Code C: Hive Query Example
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Sub-Section: Overview of Apache Hive
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Overview of Apache Hive
• Apache Hive is a high-level data warehousing and SQL-like query language tool
built on top of MapReduce.

• It acts as an abstraction layer, allowing users to work with large datasets stored in
Hadoop Distributed File System (HDFS) without needing to write complex
MapReduce jobs themselves.

• Under the hood, Hive generates MapReduce jobs that are executed on the
Hadoop cluster. This means it leverages the distributed processing capabilities of
Hadoop for scalability and parallel processing.

• Hive has evolved beyond MapReduce to support other execution engines, such as
Tez and Spark, which can enhance performance and usability. This will be
discussed later.
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Sub-Section: Comparing Hive to Traditional
Databases
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Comparison between Apache Hive and
Traditional RDBMS (Part 1)

Feature Apache Hive Traditional RDBMS
Purpose Big data analytics. Transactional systems and tra-

ditional data warehousing.
Query Language HiveQL, similar to SQL. SQL.
Speed Slower, optimized for batch pro-

cessing.
Faster, optimized for real-time
transactional processing.

Data Size Designed to handle petabytes
of data.

gigabytes to terabytes; some
systems can handle petabytes
at higher cost.

ACID Properties Limited ACID support. Full ACID support.
Table T-1: Comparison between Apache Hive and Traditional RDBMS
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Comparison between Apache Hive and
Traditional RDBMS (Part 2)
Feature Apache Hive Traditional RDBMS
Storage Built on HDFS. Uses internal storage mecha-

nisms.
Metadata Storage Stored in Hive Metastore. Stored in system catalogs

within the database.
Compute Engine MapReduce, Tez, or Spark can

be used.
Built-in engine, tightly inte-
grated.

Query Execution Location Executes on Hadoop cluster
nodes.

Executes on the database
server.

Data Storage Formats ORC, Parquet, CSV, JSON, XML,
Avro Proprietary Binary Format

Max Simultaneous Con-
nections Governed by Hadoop Cluster Varies (Hundreds to Thousands)

Table T-2: Comparison between Apache Hive and Traditional RDBMS
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Section: Hive Architecture
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Abstract Components of Apache Hive
• Hive Clients.

• Hive Services.

• Hive Metadata (Metastore).

• Storage.

• Compute.
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Abstract Components of Apache Hive

Hive Architecture
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Figure F-1: Abstract Components of Apache Hive
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Hive Clients
• Hive provides various drivers for seamless communication with different types of
applications.

• For Thrift-based applications, Hive offers the Thrift client for effective
communication.

• If you are working with Java-related applications, Hive provides JDBC drivers for
smooth integration.

• Additionally, for other types of applications, Hive offers ODBC drivers, ensuring
versatility.

• These clients and drivers serve as intermediaries, connecting your applications
with Hive Server in the Hive services.
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Hive Services
• Hive Services act as the intermediaries for client interactions with Hive.

• When clients need to perform query-related operations in Hive, they
communicate through Hive Services.

• All drivers, including JDBC, ODBC, and other client-specific applications,
communicate with Hive Server and the primary driver within Hive Services.

• The main driver in Hive Services processes requests from various applications,
directing them to the metastore and data systems for further processing.
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Hive Services | CLI (Continued)
• Hive Command Line Interface (CLI)

• The CLI is the most common way to access Hive.

• Its design can make it challenging to use programmatically.

• It is a fat client, requiring a local copy of all Hive components and
configurations.

• It needs a copy of a Hadoop client and its configuration.

• The CLI functions as an HDFS client, a MapReduce client, and a JDBC client
(for accessing the metastore).

• Even with the correct client installation, ensuring all necessary network
access can be complex, especially across subnets or datacenters.

Data Engineering In Depth | Moustafa Mahmoud
Page 20/107



Hive Services | HiveServer2 (Continued)
• HiveServer2: HiveServer2 is a service that allows clients to submit HiveQL queries
programmatically. It provides a remote interface for running Hive queries and
managing sessions.

• Thrift Service: Hive uses the Apache Thrift framework to provide a cross-language
service interface. This enables communication between clients and the Hive
server.

• Sessions: When clients connect to HiveServer2, sessions are established to
manage their interactions. Sessions help keep track of query state and context.
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Hive Services | Hive Driver
• The Hive Driver is a critical component responsible for query execution.

• It consists of several key components:
• Query Compiler.

• Optimizer.

• Execution

• Together, these components ensure efficient and effective query processing in
Hive.
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Hive Services | Hive Driver (Continued)
• Query Compiler

• The Query Compiler takes HiveQL queries and translates them into
executable jobs.

• It’s responsible for the logical and physical query planning, ensuring that
the queries are optimized for efficient execution.
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Hive Services | Hive Driver (Continued)
• Query Optimizer

• It applies optimization techniques, including predicate pushdown and join
optimization, to enhance query performance.

• This ensures that queries are executed as efficiently as possible.
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Hive Services | Hive Driver (Continued)
• The Execution Engine is responsible for the actual execution of queries.

• It encompasses several key tasks, including:
• Plan Execution: It executes the query plan generated by the Query Compiler.

• Job(s) Generation: Depending on the chosen execution engine (e.g.,
MapReduce), it generates the necessary jobs to process data in parallel.

• Submission to Hadoop: It submits these jobs to the Hadoop cluster or
other compatible compute environments for execution.

• Progress Monitoring: It continuously monitors the progress of the query
execution, providing insights into job completion and overall performance.
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Metadata Store (e.g., MySQL)
• The Metadata Store is a relational database, such as MySQL, that stores critical
information about tables, columns, partitions, and their relationships.

• This database acts as a catalog, enabling Hive to understand the data’s structure
and schema.
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Data Storage
• Hive operates on data stored in HDFS or compatible storage systems.

• Instead of transforming the data, it interprets it using a schema on read approach.

• This allows users to work with data without the need for extensive data
preparation.
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Sub-Section: Job Execution Flow in Hive

Data Engineering In Depth | Moustafa Mahmoud
Page 28/107



Job Execution Flow in Hive
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Figure F-2: Hive Job execution flow
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Sub-Section: Hive Table Format
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Hive Table Format
• Hive was created to convert SQL statements into MapReduce jobs.

• Mechanism needed for SQL to identify files and metadata.

• Hive was a breakthrough, linking directories and files to tables.

• HDFS directories map to database schemas and tables.

Data Engineering In Depth | Moustafa Mahmoud
Page 31/107



Hive Table Format | continued
• This was a breakthrough as it enabled working directly with the object store (i.e.,
HDFS) as the primary database storage, eliminating the need for custom file
formats.

• It also introduced flexibility in adding more file input formats (open formats),
such as CSV, ORC, AVRO, Parquet, etc. Any processing that can be done with
Map-Reduce can be applied to Hive.

• Hive uses metastore/metadata to map raw HDFS data to named columns and
types.

• Each Hive table belongs to a specific database.
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Technical components in a data lake

Apache Iceberg: The Definitive Guide:
Data Lakehouse Functionality,
Performance, and Scalability
on the Data Lake
PUBLISHED BY: O’Reilly Media, Inc.

Figure F-3: Technical components in a data lake
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Hive Table Format | Example of Text File
• Each Hive table links to a folder, usually on HDFS.

• This folder contains one or more text files.
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Text File vs. Binary File in Hive | High
Level
Criteria Text File Binary File (e.g., ORC, Parquet)
Readability Human-readable Not human-readable
Debugging Easier Harder
Storage Size Larger More efficient
Speed Slower Faster
Delimiters Basic (e.g., Control-A) Complex types supported
Suitability Small datasets Large datasets

Table T-3: Comparison between Text and Binary File Formats in Hive
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Why Binary Format is Faster than Text
Format

Factor Text File Binary File
Parsing Needs conversion Directly readable
Memory Less efficient Efficient
Storage Larger files Smaller due to compression
Compression Basic Advanced algorithms
IO Operations More reads/writes Fewer reads/writes
Schema Evolution Harder Easier
Table T-4: Summary: Binary formats are generally more efficient in reading, writing, and storing data, making

them faster for large datasets.
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Section: Hive Data Management
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Sub-Section: Hive Database
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Understanding Hive Database
• What is Hive Database?

• A namespace for tables.

• Helps in organizing data in Hive.

• Namespaces function to avoid naming conflicts for tables, views, partitions,
columns, and so on. Databases can also be used to enforce security for a
user or group of users.

• Table Organization
• Groups related tables under a single database.

• Simplifies data management.

• Homogeneous units of data which have the same schema.
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Hive Warehouse Structure

Figure F-4: Hive database structure
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Hive Warehouse Structure | continued

Figure F-5: Hive database structure | Retail DB Example
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Hive Warehouse Structure | continued

Figure F-6: Hive database structure | Retail DB HDFS Structure
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Creating Database in Hive

1 CREATE [REMOTE] (DATABASE|SCHEMA) [IF NOT EXISTS] database_name
2 [COMMENT database_comment]
3 [LOCATION hdfs_path]
4 [MANAGEDLOCATION hdfs_path]
5 [WITH DBPROPERTIES (property_name=property_value, ...)];

Code C: Create Database command in Hive

1 CREATE DATABASE hrDB;
2 USE hrDB;

Code C: Create Database Example

Data Engineering In Depth | Moustafa Mahmoud
Page 43/107



Drop Database in Hive

1 DROP (DATABASE|SCHEMA) [IF EXISTS] database_name [RESTRICT|CASCADE];

Code C: Drop Database command in Hive
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Alter Database in Hive
1 ALTER (DATABASE|SCHEMA) database_name
2 SET DBPROPERTIES (property_name=property_value, ...);

Code C: Alter Database command in Hive

1 ALTER (DATABASE|SCHEMA) database_name SET LOCATION hdfs_path;

Code C: Alter Database Example
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Use Database in Hive
1 USE database_name;
2 USE DEFAULT;

Code C: Alter Database command in Hive
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Hive Schema vs. Database
• In Hive, the terms ’schema’ and ’database’ are interchangeable.

• Both serve as a namespace for tables.

From Hive Documentation

”The uses of SCHEMA and DATABASE are interchangeable – they mean the same
thing. CREATE DATABASE was added in Hive 0.6 (HIVE-675). TheWITH DBPROPERTIES
clause was added in Hive 0.7 (HIVE-1836).”
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Sub-Section: Hive Tables
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Creating Tables in Hive
1 CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
2 [( col_name data_type [column_constraint_specification] [COMMENT col_comment], ...

[constraint_specification])]
3 [COMMENT table_comment]
4 [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
5 [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets

BUCKETS]
6 [SKEWED BY (col_name, col_name, ...)
7 ON ((col_value, col_value, ...) , (col_value, col_value, ...) , ...)
8 [STORED AS DIRECTORIES]
9 [[ROW FORMAT row_format]
10 [STORED AS file_format]
11 |STORED BY ’storage.handler.class.name’ [WITH SERDEPROPERTIES (...)]]
12 [LOCATION hdfs_path]
13 [TBLPROPERTIES (property_name=property_value, ...)]
14 [AS select_statement];

Code C: Create Table Commands
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CREATE TABLE in Hive | continued

Part 1: Table Creation Basics
• CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS]

[db_name.]table_name
• TEMPORARY: Creates a temporary table.

• EXTERNAL: Defines the table as an external table.

• IF NOT EXISTS: Only creates if the table does not exist.

• db_name.table_name: Specifies database and table name.
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CREATE TABLE in Hive | continued

Part 2: Column Definitions
• [(col_name data_type [COMMENT col_comment], ...)]

• Define the columns and their data types.

• Optional comment for each column.
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CREATE TABLE in Hive | continued

Part 2: Column Definitions (data_type)
• Primitive Type: Basic data types like INT, BIGINT, BOOLEAN, FLOAT, DOUBLE,
STRING, TIMESTAMP, DECIMAL, DATE, etc.

• Array Type: Ordered sequences of the same type, e.g., ARRAY<INT>.
• Map Type: Key-value pairs, e.g., MAP<STRING, INT>.
• Struct Type: Collection of named fields that can be different types, e.g.,
STRUCT<field1:STRING, field2:INT>.

• Union Type: Can be any of the specified types, e.g., UNIONTYPE<STRING,
INT>.
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CREATE TABLE in Hive | continued

Part 3: Row Format and SerDe in Hive
• [ROW FORMAT row_format]

• Specifies the row format (e.g., delimited, sequence file, etc.)

• Native SerDe is used if ROW FORMAT is not specified or ROW FORMAT
DELIMITED is specified.

• Use SERDE clause for custom SerDe.
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CREATE TABLE in Hive | continued
RegEx Example
1 ROW FORMAT SERDE ’org.apache.hadoop.hive.serde2.RegexSerDe’
2 WITH SERDEPROPERTIES (”input.regex” = ”<regex>”)
3 STORED AS TEXTFILE;

Code C: RegEx Example

CSV/TSV Example
1 ROW FORMAT SERDE ’org.apache.hadoop.hive.serde2.OpenCSVSerde’
2 WITH SERDEPROPERTIES (”separatorChar” = ”\t”,”quoteChar” = ”’”, ”escapeChar” = ”\\”)
3 STORED AS TEXTFILE;
4 \end{verbatim}

Code C: CSV/TSV Example
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CREATE TABLE in Hive | continued

Part 4: File Format and Storage Handler
• [STORED AS file_format | STORED BY

’storage.handler.class.name’]
• Specifies the file format (e.g., TEXTFILE, PARQUET, SEQUENCEFILE,
ORC, AVRO, JSONFILE etc.).

• Custom storage handler (e.g., INPUTFORMAT
input_format_classname OUTPUTFORMAT
output_format_classname)
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CREATE TABLE in Hive | continued

Part 5: Table Location
• [LOCATION hdfs_path]

• Sets the HDFS directory where table data will be stored.
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CREATE TABLE in Hive | continued

Part 6: Table Properties
• [TBLPROPERTIES (property_name=property_value, ...)]

• Sets table-level properties.
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CREATE TABLE in Hive | continued

Part 7: CTAS
• [AS select_statement]

• Populates the table using the result set of a SELECT statement.
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CREATE TABLE in Hive | continued

Part 8: Table Partitions
• [PARTITIONED BY (col_name data_type [COMMENT

col_comment], ...)]
• Specifies columns to be used for partitioning.
• Partitioned tables can be created using the PARTITIONED BY
clause.

• A table can have one or more partition keys, and a separate data
directory is created for each distinct value combination in the
partition columns.

• Partitioning enables efficient data filtering.
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CREATE TABLE in Hive | continued

Part 8: Table Partitions

1 CREATE TABLE sales (
2 product_id INT,
3 order_date STRING,
4 amount DOUBLE
5 )
6 PARTITIONED BY (year INT, region STRING)
7 ROW FORMAT DELIMITED
8 FIELDS TERMINATED BY ’,’
9 STORED AS TEXTFILE;

Code C: Create Partitioned Table
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CREATE TABLE in Hive | continued

Part 8: Table Partitions
• Table: sales

• Columns: product_id, order_date, amount

• Partition Columns: year, region
This table stores sales records. Each record includes the product_id, order_date,
and amount of the sale.
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CREATE TABLE in Hive | continued
Part 8: Table Partitions

Figure F-7: Hive database structure | Retail DB HDFS Structure
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CREATE TABLE in Hive | continued

Part 8: Table Partitions

1 SELECT * FROM sales WHERE year=2021 AND region=’US’;

Code C: Simple sql statement for sales table filters on year and region
Non-Partitioned Table Partitioned Table
Step 1: Full table scan Step 1: Identify partitions

(year=2021, region=’US’)
Step 2: Apply WHERE filters
(year=2021 AND region=’US’)

Step 2: Scan only those partitions

Table T-5: Comparison: Non-Partitioned vs Partitioned Table.
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CREATE TABLE in Hive | continued
Part 8: Table Partitions
1 EXPLAIN SELECT * FROM sales_non_partitioned WHERE year=2021 AND region=’US’;

Code C: Explain Plan Command for Non-Partitioned Table

1 STAGE PLANS:
2 Stage: Stage−1
3 Map Reduce
4 Map Operator Tree:
5 TableScan
6 alias : sales
7 Filter Operator
8 predicate: (year = 2021 and region = ’US’)

Code C: Explain Plan Command for Non-Partitioned Table
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CREATE TABLE in Hive | continued
Part 8: Table Partitions
1 EXPLAIN SELECT * FROM sales_partitioned WHERE year=2021 AND region=’US’;

Code C: Explain Plan Command for Partitioned Table

1 STAGE PLANS:
2 Stage: Stage−1
3 Map Reduce
4 Map Operator Tree:
5 TableScan
6 alias : sales_partitioned
7 Filter Operator
8 predicate: (year = 2021 and region = ’US’)
9 Partition Pruning: (year = 2021 and region = ’US’)

Code C: Explain Plan Command for Partitioned Table
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CREATE TABLE in Hive | continued

Part 8: Table Partitions

Aspect Non-Partitioned Partitioned
Full Table Scan Yes No
Partition Pruning N/A Yes
I/O Cost High Low
Time Complexity More Time Less Time
Resource Utilization High Low

Table T-6: Comparison: Non-Partitioned vs Partitioned Table.
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CREATE TABLE in Hive | continued

Part 9: Clustering and Sorting
• [CLUSTERED BY (col_name, ...) [SORTED BY (col_name

[ASC|DESC], ...)] INTO num_buckets BUCKETS]
• Clustering and sorting options for better performance and to
optimize data storage.
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CREATE TABLE in Hive | continued

Part 9: Clustering and Sorting | CLUSTERED BY
vspace.2cm

ID Name Department Salary
1 John HR 5000
2 Alice Sales 6000
3 Bob IT 7000
4 Carol HR 8000
5 Dave Sales 9000
6 Eve IT 4000

Table T-7: Sample data for employee table
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CREATE TABLE in Hive | continued

Part 9: Clustering and Sorting | CLUSTERED BY

1 CREATE TABLE Employee (
2 ID INT,
3 Name STRING,
4 Department STRING,
5 Salary INT)
6 CLUSTERED BY (Department) INTO 3 BUCKETS;

Code C: Create CLUSTERED Table
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CREATE TABLE in Hive | continued

Part 9: Clustering and Sorting | CLUSTERED BY
• Bucket 1: Data for HR

• Bucket 2: Data for Sales

• Bucket 3: Data for IT
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | CLUSTERED BY

Figure F-8: Hive Table | Clustered by mechanism
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | CLUSTERED BY

Figure F-9: Hive Table | Clustered by mechanism example
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | CLUSTERED BY

Figure F-10: Hive Table | Clustered by mechanism example
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CREATE TABLE in Hive | continued

Part 9: Clustering and Sorting | CLUSTERED BY

1 EXPLAIN SELECT * FROM Employee WHERE Department = ’HR’;

Code C: Simple SQL statement
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | CLUSTERED BY
1 ExplainPlan:
2 Stage:
3 − Name: ”Stage−1”
4 Type: ”Map Reduce”
5 Operations:
6 − TableScan:
7 TableName: ”Employee”
8 − Filter :
9 Condition: ”Department=’HR’”

Code C: Simplified Explain Plan for Table Without CLUSTERED BY
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | CLUSTERED BY
1 Stage:
2 − Name: ”Stage−1”
3 Type: ”Map Reduce”
4 Operations:
5 − TableScan:
6 TableName: ”Employee”
7 Bucketing:
8 PruningEnabled: true
9 RelevantBuckets: ”1/3”
10 − Filter :
11 Condition: ”Department=’HR’”

Code C: Simplified Explain Plan for Table with CLUSTERED BY
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CREATE TABLE in Hive | continued

Part 9: Clustering and Sorting | CLUSTERED BY
• Faster JOIN operations.

• Optimized for grouped analysis.
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CREATE TABLE in Hive | continued

Part 9: Clustering and Sorting | SORTED BY

1 CREATE TABLE Employee (
2 ID INT,
3 Name STRING,
4 Department STRING,
5 Salary INT)
6 CLUSTERED BY (Department) INTO 3 BUCKETS;

Code C:With CLUSTERED BY and SORT BY
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CREATE TABLE in Hive | continued

Part 9: Clustering and Sorting | SORTED BY

1 CREATE TABLE Employee (
2 ID INT,
3 Name STRING,
4 Department STRING,
5 Salary INT)
6 CLUSTERED BY (Department) SORTED BY (ID) INTO 3 BUCKETS;

Code C:With only CLUSTERED BY
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | SORTED BY

1 EXPLAIN SELECT * FROM Employee WHERE Department = ’HR’

Code C: Explain Plan Query
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | SORTED BY
1 Stage:
2 − Name: ”Stage−1”
3 Type: ”Map Reduce”
4 Operations:
5 − TableScan:
6 TableName: ”Employee”
7 Bucketing:
8 PruningEnabled: true
9 RelevantBuckets: ”1/3”
10 − Filter :
11 Condition: ”Department=’HR’”

Code C: Simplified Explain Plan With only CLUSTERED BY
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | SORTED BY
1 Stage:
2 − Name: ”Stage−1”
3 Type: ”Map Reduce”
4 Operations:
5 − TableScan:
6 TableName: ”Employee”
7 Bucketing:
8 PruningEnabled: true
9 RelevantBuckets: ”1/3”
10 − Filter :
11 Condition: ”Department=’HR’”
12 − Sort:
13 Columns: ”ID”

Code C: Simplified Explain Plan: With CLUSTERED BY and SORT BY
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | Clustered By: Key Points

• Data Distribution: Distributes rows based on hash value of one or more
columns.

• Query Optimization: Faster responses when filtering by clustered columns.

• Storage: Organizes data in HDFS, improving data locality.

• Better with Joins: Joins on bucketed columns are optimized.
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | Clustered By: When to Use

• Large Datasets: Effective for partitioning large datasets.

• Common Queries: Use when filtering or joining on specific columns.
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | Sort By: Key Points

• Ordering: Sorts data within each bucket.

• Local Sort: Sorting is local to each bucket, not global.

• Speed: May speed up range-based queries within a bucket.
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | Sort By: When to Use

• Range Queries: Useful for frequent range-based queries on a column
within a bucket.

• Ordered Reads: Use if you need data in a specific order within each bucket.
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CREATE TABLE in Hive | continued
Part 9: Clustering and Sorting | Conclusion

• Understand the query and consumption patterns.
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CREATE TABLE in Hive | continued

Part 10: Data Skewing
• [SKEWED BY (col_name, ...) ON ((col_value, ...), ...)

[STORED AS DIRECTORIES]]
• Specifies skewed columns and values for better query performance.

• Data skewness is when data is not distributed evenly. It means some
values are seen more often than others.

• In big data processing, like with MapReduce, data skew can cause
some reducers to have much more work than others. This imbalance
can make the whole system slow because everyone has to wait for
the busiest reducer.
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CREATE TABLE in Hive | continued
Part 10: Data Skewing

• Imagine a dataset where one ID appears many times, while others appear
only a few times. This ”popular” ID can overwhelm one reducer, while other
reducers finish quickly and wait.

ID Frequency
1 50000
2 150
3 150
4 100
5 100

Table T-8: Example of Skewed Data
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CREATE TABLE in Hive | continued
Part 10: Data Skewing

Figure F-11: Abstract Components of Apache Hive
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CREATE TABLE in Hive | continued
Part 10: Data Skewing
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Figure F-12: Data Skewing Example: ID Frequency histogram
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CREATE TABLE in Hive | continued
Part 10: Data Skewing

Figure F-13: Abstract Components of Apache Hive
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CREATE TABLE in Hive | continued
Part 10: Data Skewing

Figure F-14: Abstract Components of Apache Hive
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CREATE TABLE in Hive | continued
Part 10: Data Skewing

Figure F-15: Abstract Components of Apache Hive
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CREATE TABLE in Hive | continued
Part 10: Data Skewing

Figure F-16: Abstract Components of Apache Hive
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CREATE TABLE in Hive | continued

Part 10: Data Skewing
• Resolving Skewness with Hive’s SKEWED BY

• When a table is created in Hive, you can specify certain columns as
’SKEWED BY’ to improve the distribution of work during a join
operation. This allows Hive to partition the data more effectively.

Data Engineering In Depth | Moustafa Mahmoud
Page 96/107



Sub-Section: Query Execution Plan
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Query Execution Plan
• The Hive driver is responsible for translating SQL statements into an execution
plan for the target execution engine.

• The process involves several key steps:
1. The parser parses the SQL statement and generates an Abstract Syntax Tree

(AST) representing logical operations like SELECTs, JOINs, UNIONs,
groupings, and more.

2. The planner retrieves table metadata from the Hive Metastore, including
HDFS file locations, storage formats, row counts, etc.

3. The query optimizer utilizes the AST and table metadata to produce a
physical operation tree known as the execution plan, defining the physical
operations needed to retrieve data, such as nested loop joins, sort-merge
joins, hash joins, index joins, and more.
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Query Execution Plan
• The execution plan determines the tasks executed on the Hadoop cluster and
significantly impacts performance in data analytics systems like Hive.

• The execution plan generated by the query optimizer has a substantial impact on
performance.

• Differences in the execution plan can result in significant variations in execution
time, ranging from seconds to hours.

• An optimal execution plan is crucial for efficient query processing in Hive.
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Query Execution Plan
• The Cost-Based Optimization (CBO) plays a pivotal role in enhancing the
execution plan.

• CBO leverages table statistics to make informed decisions regarding the
performance costs associated with each potential execution plan.

• This intelligent optimization ensures that the Hive driver produces an optimal
execution plan, improving query performance.
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Sub-Section: Cost-Based Optimization
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Sub-Section: Hive Schema and Data Storage
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Hive Schema and Data Storage
• Hive queries operate on tables, similar to RDBMS.

• A table corresponds to a directory in storage (HDFS, S3, GCS, or Azure).

• Each table comprises one or more files.

• Every table is associated with a specific file format.

• Hive stores table structure and location in the metadata store (RDBMS).

• Hive supports various file formats, such as Parquet, ORC, and Text.
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Hive Schema and Data Storage
(Continued)

• Hive queries reference the metastore to access table location and structure.

• While queries interact with the file system, metadata is stored in the RDBMS.
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Section: Further Readings and Assignment

Data Engineering In Depth | Moustafa Mahmoud
Page 105/107



Thank you for watching!
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See you in the next video ©
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